H=-16t^2+61

Simple and best practice solution for H=-16t^2+61 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for H=-16t^2+61 equation:



=-16H^2+61
We move all terms to the left:
-(-16H^2+61)=0
We get rid of parentheses
16H^2-61=0
a = 16; b = 0; c = -61;
Δ = b2-4ac
Δ = 02-4·16·(-61)
Δ = 3904
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$H_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$H_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{3904}=\sqrt{64*61}=\sqrt{64}*\sqrt{61}=8\sqrt{61}$
$H_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-8\sqrt{61}}{2*16}=\frac{0-8\sqrt{61}}{32} =-\frac{8\sqrt{61}}{32} =-\frac{\sqrt{61}}{4} $
$H_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+8\sqrt{61}}{2*16}=\frac{0+8\sqrt{61}}{32} =\frac{8\sqrt{61}}{32} =\frac{\sqrt{61}}{4} $

See similar equations:

| (2x-3)(x+2)=3(x-2 | | 4u/5=12 | | 58.67-28.72=t | | 6(y+2)-4=7y | | 11.8/x=21 | | 8x-56=104 | | 0.5y=-2 | | H=-16t2+61 | | 1+5z=2 | | -2j-(-j)-(-11)-9j-4=-5 | | 40x^2+117x-360=0 | | −7(x+−6)=−6(x+−5)+1 | | 2.5x+8=3.5x | | 8.2-6.72=k | | 20/150•d/30=130/100 | | (8x-60)(5x+(3/8))=0 | | -37-x=-8(x-1)-2x | | -50+3xX=11 | | 16d=144;d=9 | | 58h+112=5, | | -2(12-m)=-22 | | (-3x+5)-(x-6)=x | | 8=-(x-9) | | (8x-3)(5x+120)=0 | | -x-23=55 | | x=(-3x+5)-(x-6) | | 11f=7-14f+5 | | -20s-13s+-3s-(-s)+7s+8=-20 | | -10–9h=-10h | | 4x+3=6x-10 | | 4/x=14.72 | | 4(x+3)/5=4 |

Equations solver categories